THE CHINESE UNIVERSITY OF HONG KONG Department of Mathematics MATH 3030 Abstract Algebra 2024-25 Homework 7 solutions

Compulsory Part

1. Let G be a finite group, and suppose that there exist representatives g_1, \ldots, g_r of the r distinct conjugacy classes in G such that $g_i g_j = g_j g_i$ for all i, j. Show that G is abelian.

Answer. Consider G acting on itself by conjugations. Fix a particular g_i , then for any $x \in G$, we know that it is belongs to some conjugacy class, i.e. $gxg^{-1} = g_j$ for some g. By assumption g_j commutes with g_i and so $gxg^{-1} \in Z_G(g_i)$ the stabilizer of g_i . In other words, $x \in g^{-1}Z_G(g_i)g$. This implies that $x \in \bigcup_{g \in G} g^{-1}Z_G(g_i)g$. So we necessarily have $G = \bigcup_{g \in G} g^{-1}Z_G(g_i)g$.

Recall from tutorial 6 question 4b that this only happens when $Z_G(g_i) = G$ because for a proper subgroup $H \leq G$ there are at most [G : H] distinct subgroups of the form gHg^{-1} and so the union contains at most [G : H](|H| - 1) + 1 < |G| many elements.

Therefore g_i commutes with all of G for any i, so the conjugacy class is just a singleton $\{g_i\}$. Since this holds for all representative of each individual conjugacy class, this implies that G is abelian.

2. Let G be a finite group and let primes p and $q \neq p$ divide |G|. Prove that if G has precisely one proper Sylow p-subgroup, then it must be a normal subgroup, and hence G is not simple.

Answer. By the second Sylow theorem, any Sylow p-subgroups are conjugate to each other. If P is the unique proper Sylow p-subgroup of G, then gPg^{-1} is again a Sylow p-subgroup, which must be itself. So for arbitrary $g \in G$ we have $gPg^{-1} = P$, hence it is a proper normal subgroup.

- 3. Let G be a finite group and let p be a prime dividing |G|. Let P be a Sylow p-subgroup of G.
 - (a) Show that P is the only Sylow p-subgroup of $N_G(N_G(P))$.
 - (b) Using part (a) and applying Sylow Theorems, show that $N_G(N_G(P)) = N_G(P)$.

Answer.

- (a) Recall that $N_G(P)$ is the normalizer of P, i.e. consisting of all g so that $gPg^{-1} = P$. By definition P is normal in $N_G(P)$ and so it is the unique Sylow p-subgroup of $N_G(P)$. Now let $h \in N_G(N_G(P))$, then $hN_G(P)h^{-1} = N_G(P)$. Restricting this on P, by order consideration hPh^{-1} must be some Sylow p-subgroup inside $N_G(P)$ so $hPh^{-1} = P$ by uniqueness. This implies that P is also normal in $N_G(N_G(P))$, so it is also the unique Sylow p-subgroup.
- (b) Recall that $N_G(P) = \{g \in G : gPg^{-1} = P\}$, since any $h \in N_G(N_G(P))$ satisfies this condition by part (a), we have $N_G(N_G(P)) = N_G(P)$.

4. Show that there are no simple groups of order $p^r m$, where p is a prime, r is a positive integer, and 1 < m < p.

Answer. Suppose G is a group of order $p^r m$ with 1 < m < p, consider Sylow p-subgroups of G, by third Sylow theorem, $n_p = p^i k \equiv 1 \mod p$ for $0 \le i \le r$ and $1 \mid k \mid m$. This implies that i must be zero and k = 1. So $n_p = 1$ and there is a unique Sylow p-subgroup of G, which is proper and normal. So G cannot be simple.

- 5. Let G be a group of order 6. Suppose G is not abelian.
 - (a) Show that G has three subgroups of order 2.
 - (b) Show that there is a homomorphism φ : G → S₃ with |ker(φ)| ≤ 2. [*Hint:* Consider the action of G on the set of left cosets of a subgroup of order 2 in G (as in HW6, Optional Q.5).]
 - (c) Show that $G \simeq S_3$.

Answer.

- (a) If G is of order 6 and nonabelian, then by third Sylow theorem n₃ ≡ 1 mod 3 and n₃|6 imply that n₃ = 1. While n₂ ≡ 1 mod 2 and n₂|6 imply that n₂ can be 1 or 3. If n₂ was also 1, then the Sylow subgroups are unique and isomorphic to Z₂ and Z₃, and G ≅ Z₂ × Z₃, which is abelian. This gives a contradiction. So n₂ = 3 and there are three subgroups of order 2.
- (b) Suppose P is one of the Sylow 2-subgroups, then G acts on the left coset space G/P by left multiplication. As |G/P| = 3, this group action induces a homomorphism φ : G → S₃. Since the action is transitive, the image of φ consists of (123). So |φ(G)| ≥ 3, or ker(φ) ≤ 2.
- (c) Consider the non-identity element x of P, we would like to prove that x acting on left P-cosets nontrivially, i.e φ(x) ≠ id ∈ S₃. Assume for the sake of contradiction that φ(x) = id, then for an arbitrary y ∈ G, y lies in some coset yP and we have x ⋅ yP = yP since we have assumed that x acts trivially. This implies that y⁻¹xy ∈ P. So we have y⁻¹Py = P. But since y is arbitrary, this would imply that P is a normal subgroup, contradicting the fact that P is not the unique Sylow 2-subgroup.

Now x acts nontrivially on $G/P = \{P, g_1P, g_2P\}$, and x fixes P because $x \in P$. So it swaps the two other cosets. In other words, $\phi(x)$ is a 2-cycle in S_3 . Since $\phi(G)$ contains a 2-cycle and a 3-cycle, it is the whole group. And $\phi : G \to S_3$ is an isomorphism.

6. (a) Let G be a finite group, and H, K < G. Show that

$$|HK| = \frac{|H| \cdot |K|}{|H \cap K|}$$

(Note that HK may not be a subgroup of G, so the above is just an equality between orders of sets.)

(b) Suppose that G is a finite group of order 48.

- i. Applying Sylow Theorems, show that the number n_2 of Sylow 2-subgroups in G is either 1 or 3.
- ii. Suppose that $n_2 = 3$ and let H, K be two distinct Syloew 2-subgroups in G. Show that $|H \cap K| = 8$ by applying part (a). From this and considering the normalizer $N_G(H \cap K)$, deduce that $H \cap K$ is normal in G, thereby showing that G cannot be simple.

Answer.

(a) Suppose $H \times K$ acts on HK by $(h, k) \cdot g = hgk^{-1}$. One can check that

$$(h_1, k_1)(h_2, k_2) \cdot g = h_1 h_2 g k_2^{-1} k_1^{-1} = (h_1 h_2) g (k_1 k_2)^{-1} = (h_1 h_2, k_1 k_2) \cdot g$$

And $(e, e) \cdot g = g$. Furthermore given $g, g' \in HK$, we can write g = hk and g' = h'k' and hence $g' = (h'h^{-1}, k'^{-1}k) \cdot g$. So this defines a transitive action. Note that any stabilizer (h, k) of $e \in HK$ satisfies $(h, k) \cdot e = hk^{-1} = e$. In other words, $(H \times K)_e = \{(h, k) \in H \times K : h = k\} \cong H \cap K$. By orbit-stabilizer theorem,

$$|HK| = \frac{|H \times K|}{|(H \times K)_e|} = \frac{|H| \cdot |K|}{|H \cap K|}.$$

- (b) i. For a group G of order $48 = 2^4 \cdot 3$, third Sylow theorem implies that $n_2 \equiv 1 \mod 2$ and $n_2|48$. Since n_2 cannot be even, this forces $n_2 = 1$ or 3.
 - ii. If $n_2 = 3$, for two distinct Sylow 2-subgroups H, K, we have that $H \cap K$ is also a 2-group, with order possibly given by 8, 4, 2 or 1. By considering part (a), $48 \ge |HK| = 16^2/2^k$ where k = 3, 2, 1 or 0. As 256/4 = 64 > 48, the only possible value of $|H \cap K|$ is 8,. Now because $H \cap K$ has index 2 in Hand K, it is a normal subgroup of both H and K. By definition $N_G(H \cap K)$ is the largest subgroup so that $H \cap K$ is normal in, so our observation implies that $H, K \le N_G(H \cap K)$. Then $HK \subset N_G(H \cap K)$. Since |HK| = 32, we immediately have $N_G(H \cap K) = G$. And so $H \cap K$ is in fact a proper normal subgroup in G. So that G is not simple.

Optional Part

1. Let G be a finite group of odd order. Suppose that $g \in G$ and g^{-1} lie in the same conjugacy class. Show that g = e.

Answer. Note that if $hgh^{-1} = g^{-1}$, then $hg^{-1}h^{-1} = (hgh^{-1})^{-1} = g$. We can let $\langle h \rangle$ acts on the set $X = \{g, g^{-1}\}$, which has cardinality 1 or 2 depending on whether g = e or not. But $\langle h \rangle$ has odd order and the action is transitive, this forces $|X| = \frac{\operatorname{ord}(h)}{d}$ where d is the order of stabilizer of g, which is odd again. This implies that |X| must be an odd number, hence it is equal to 1 and g = e.

2. Show that every group of order 30 contains a subgroup of order 15.

Answer. Let G be a group of order 30, then $n_3 \equiv 1 \mod 3$ so there can be 1 or 10 Sylow 3-subgroups. Likewise $n_5 \equiv 1 \mod 5$, so there can be 1 or 6 Sylow 5-subgroups. It is impossible to have both $n_3 = 10$ and $n_5 = 6$ because the Sylow p-subgroups are cyclic

and have trivial intersection. So having 10 Sylow 3-subgroups would give $10 \cdot 2 = 20$ elements of order 3, and having 6 Sylow 5-subgroups would give $4 \cdot 6 = 24$ elements of order 5, clearly exceeding the total number of elements in G.

As a result, either the Sylow 3-subgroup or the Sylow 5-subgroup is unique, and hence is normal. Say we have a normal Sylow 3-subgroup P, then if Q is any Sylow 5-subgroup, PQ is a subgroup of order |PQ| = 15, since they are cyclic and have trivial intersection. Same argument for the case when the Sylow 5-subgroup is unique.

3. Prove that no group of order 160 is simple.

Answer. Let G be a group of order $160 = 2^5 \cdot 5$, then $n_2 \equiv 1 \mod 2$ so there can be 1 or 5 Sylow 2-subgroups. If there are a unique Sylow 2-subgroup, then it is proper normal and G cannot be simple.

Now suppose $n_2 = 5$. Recall that G acts on the set of Sylow 2-subgroups T by conjugation. Since there are 5 such subgroups, we get a permutation homomorphism $G \to S_5$. Now G has order 160 while S_5 has order 120. The kernel of such map must be nontrivial and we obtain a proper normal subgroup of G.

4. How many elements of order 7 are there in a simple group of order 168?

Answer. Let G be a simple group of order 168. Then $n_7 \mid 168$ and $n_7 \equiv 1 \pmod{7}$. Then $n_7 \mid 24$, and so $n_7 = 1$ or 8. Since G is simple, $n_7 \neq 1$. Then $n_7 = 8$. Let $P_1, ..., P_8$ be the 8 subgroups of order 7 in G. Then $|P_i \cap P_j| = 1$ for each $i \neq j$. Each element of order 7 lies in precisely one of $P_1, ..., P_8$, and each of $P_1, ..., P_8$ contains 6 elements of order 7. Then there are $48 = 8 \cdot 6$ elements of order 7 in G.

5. Let p, q be prime numbers. Show that a group of order p^2q is solvable.

Answer. Let p, q be prime numbers. Let G be a group of order p^2q .

When p = q, it follows from Sylow I that G contains a subnormal series $\{e\} = H_0 < H_1 < H_2 < H_3 = G$, where each $|H_i| = p^i$. Then each H_{i+1}/H_i is cyclic of order p. Then G is solvable.

When p > q, $n_p | q$ and $n_p \equiv 1 \pmod{p}$. Then $n_p = 1$. Let P be the unique Sylow p-subgroup of G. Then $P \triangleleft G$. Since $|P| = p^2$ and |G/P| = q, both P and G/P are abelian. Then G is solvable.

When p < q, $n_q | p^2$ and $n_q \equiv 1 \pmod{q}$. Then $n_q = 1$ or $n_q = p^2$. In the former case, there is a unique Sylow q-subgroup Q of G. Then $Q \triangleleft G$, |Q| = q and $|G/Q| = p^2$. Again, Q, G/Q are both abelian, so G is solvable.

In the later case, $q | p^2 - 1$, so q | p - 1 or q | p + 1. But p < q, so it must be that q | p + 1and that q = p + 1. Then p = 2, q = 3, and $n_3 = 4$. As in the last question, there are 8 elements of order 3. Any group of order 4 must consist of the remaining 4 elements in *G*. Then there exists a unique Sylow 2 subgroup *P* of order 4. Then *P* and *G*/*P* are both abelian, so *G* is solvable.

6. Let p < q < r be prime numbers. Show that a group of order pqr is not simple.

Answer. Let p < q < r be prime numbers. Let G be a group of order pqr that is simple. Then $n_p \mid qr, n_q \mid pr, n_r \mid pq; n_p \equiv 1 \pmod{p}, n_q \equiv 1 \pmod{q}, n_r \equiv 1 \pmod{r}$, and $n_p, n_q, n_r \neq 1$. Then $n_r = pq$. Then there are pq(r-1) = pqr - pq many elements of order r. Note that $n_q = r$ or pr. This gives at least (q-1)r many elements of order q. Now $q-1 \ge p, r > q$, so (q-1)r + pq(r-1) > pq + pq(r-1) = pqr = |G|. This exceeds the number of elements of G. Contradiction arises.

Therefore, a group of order pqr is not simple.